
ACo noqt.i-G-ss 

CO m 

CO 
CO 
CM 
< 
i 
Q 
< 

@ 

THE STRUCTURE OF ATMOSPHERIC DIFFUSION AT REGIONAL SCALES 

FINAL TECHNICAL REPORT 

F. A. GIFFORD 

31 JANUARY 1991 

U. S. ARMY RESEARCH OFFICE 

CONTRACT NO. P-27096-GS-S 

APPROVED FOR PUBLIC RELEASE; 

DISTRIBUTION UNLIMITED 

S 
DTIC 
ELECTE 
MAR 181991 

91   2   19      033 



UNCLASSIFIED ' 
jgfljrtirV mgTTCÄTOj oP TIM PA<5S 

MASTER COPY FOR REPRODUCTION PURPOSES 

REPORT DOCUMENTATION PAGE 
lb. RESTRICTIVE MARKINGS 1*. REPORT SECURITY CLASSIFICATION 

ffnr1?nft1f1i 
3. DISTRIBUTION/AVAILABILITY OF REPORT 

Approved for public release; 
distribution unlimited. 

2a. SECURITY CLASSIFICATION AUTHORITY 

2b. OECLASSJFICATJON/DOWNGRADING SCHEDUU 

4. PERFORMING ORGANIZATION REPORT NUMBER(S) S. MONITORING ORGANIZATION REPORT NUMBER(S) 

6e. NAME OF PERFORMING ORGANIZATION 

Franklin A. Gifford 

«O. OFFICE SYMBOL 7«. NAME OF MONITORING ORGANIZATION 

U. S. Army Research Office 

6c ADDRESS (Gty. Stttt, snd ZPCoo») 

109 Gorgas Lane 
Oak Ridge, TN 37830 

7b. AODRESS(CKy, StMf, snd ZIP Cod*) 

P.  0.  Box 12211 
Research Triangle Park, NC 27709-2211 

U. NAME OF FUNDING/SPONSORING 
ORGANIZATION 

U.  S. Army Research Office 

8b. OFFICE SYMBOL 
QfsfipUabh) 

9. PROCUREMENT INSTRUMENT IDENTIFICATION NUMBER 

8c ADORESS (Cty, Suet, and ZIP Cod*) 

P.  0.  Box 12211 
Research Triangle Park, NC 27709-2211 

10. SOURCE OF FUNDING NUMBERS 
PROGRAM 
ELEMENT NO. 

PROJECT 
NO. 

TASK 
NO. 

WORK UNIT 
ACCESSION NO 

11. TITLE (Indudm Sacunty OsntncaHon) 

The Structure of Atmospheric Diffusion at Regional Scales 

112. PERSONAL AUTHORfS) 
F.    A.   Gifford 

13a. TYPE OF REPORT 
Final   Technical 

II 3b. TIME COVERED 
FROMQO.Tnini TOQnW.il 

14. DATE OF REPORT (Yitar. Month, Osy) 
1991. January 31  

15. PAGE COUNT 3-9 

16. SUPPUMENTARY NOTATION 
The view, opinions and/or findings contained in this report are those 

of the author(s).and should not ,bejconstrued as^an official Department of the Army position, 

17. COSATt CODES 
FIELD GROUP SU8-GROUP 

18. SUBJECT TERMS (Contfmia on nnmnm if nvctflaiy snd identify by bfodr number) 
Regional-scale   atmospheric   turbulence;    plume 
diffusion;    fractional   Brownian   motion;    diffusion 
modeling;    fractal   dimension 

<9. ABSTRACT (GontfrXM on 

The N0AA/ACURATE 
Kr-85 air-concen 
of a source near 
the renormalized 
exponents H equa 
several hundred 
values of about 
dimensions, D, e 
correlations are 
diffusion models 
analysis of shor 
are compared wit 

if necfsary snd idonttfy by block nwnbon 

data, nineteen-month long series of 12-ho 
tration measurements at five sites up to 1 
AIKEN SC, are analyzed by a technique of 

-range statistic R/S. Fractional Brownian 
1 to about 0.35 are found for atmospheric 
km, the enstrophy-cascade range, and these 
0.45 for larger-scale motions. Correspondi 
qual about 1.65 and 1.55. Related power sp 
discussed. The fractal indices can be app 
using available computer algorithms. Exam 

t-range, rapid-response atmospheric diffus 
h the ACURATE results. 

ur averaged 
050 km down wine- 
fractal geometry, 
motion (Hurst) 
eddy sizes of 
increased to Fi- 

ng fractal 
ectra and auto- 
lied in numerical 
pies of R/S- 
ion observations 

20. DISTRIBUTION/AVAILABILITY OF ABSTRACT 
DUNCLASSIFIEDAJNUMITED     Q SAME AS RPT.        QOTjC USERS 

21. ABSTRACT SECURITY CLASSIFICATION 
Unclassified 

22a. NAME OF RESPONSIBLE INDIVIDUAL 22b. TELEPHONE (Inch** An* Cod*)   22c OFFICE SYMBOL 

00 FORM 1473,54 MAR S3 APR edition may t» us«d until exhatistad. 
All other editions srm obsolete. 

SECURITY CLASSIFICATION OF THIS PAGE 

UNCLASSIFIED 



UNCLASSIFIED 
«eUMTY CUUMffCATtON O* THIS Ä35 

UNCLASSIFIED 

»CCUKITV euAttincATiON o* THIS *A«I 



CONTENT 

Accesion For 

NT/S    CRA&I 
DTIC    TAU 
U.-.an^ou .ced 
Justification 

By  
Dist ibution / 

Availability Codes 

Dist 

A-l 

Avail and/or 
Special 

INTRODUCTION  

THE NOAA/ACURATE DATA  

FRACTAL DIMENSION OF ATMOSPHERIC CLOUDS  

BROWNIAN MOTION IN ATMOSPHERIC DIFFUSION MODELING 

PAGE NO. 
   5 

6 

8 

1Ü 

SPECTRA AND CORRELATIONS  12 

RENORMALIZED RANGE (R/S) ANALYSIS  13 

R/S ANALYSIS OF SOME SMALL-SCALE, HIGH FREQUENCY DATA.,, lb 

8. SUMMARY AND CONCLUSIONS  16 

9 . ACKNOWLEDGEMENTS  17 

10. BIBLIOGRAPHY  17 

FIGURE LEGENDS 

Figures 1 to 5: Twelve-hour averaged Kr^S concentrations at 
Fayetteville NC (FAY), Tarboro NC (TAR), Norfolk VA (NOR), 
Salisbury MD (SAL), and Murray Hill NJ (MUR), respectively. 
Concentration units are 0.1 picocurie/m^. Time is given in 
halfdays (12-hour periods) starting from the first record 
chosen (cf. Table I). 

Figure 6: Twelve-hour averaged Kr^S source strengths, 
curies/hour, at the Savannah River Plant (SRP) for the ACURATE 
data period. 

Figure 7: Fractal Brownian motion time series for various H-values, 
from Barnsley, et al. (1988). 

Figures 8 to 12: Power spectra of the ACURATE concentration data of 
Figures 1 to 5. Spectral density, in units of concentration2 

per frequency unit, is plotted against frequency, per halfday. 

Figure 13: Power spectrum of the SRP source strength data of Fig.6, 
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in units of concentration per frequency unit. 

Figure 14: Autocorrelation curves for the ACURATE stations, 
including the SRP source. 

Figures 15-19: Renormalized-range, R/S, as defined by Eq. 4, for 
the ACURATE stations. 

Figure 20: Renormalized-range, R/S, as defined by Eq. 4, for the 
SRP source strengths. 

Figure 21: Time series of SF5 concentrations measured 100 m 
downwind from a steady, ground-level, point source. 

Figure 22:  Renormalized-range, R/S statistic for the concentration 
data of Fig. 21. 

Figure 23: Two-minute series of water-vapor flux values measured 
near the ground over an irrigated field. 

Figure 24: Renormalized-range, R/S statistic for the water-vapor 
flux data of Fig. 23. 

TABLES 

TABLE 1 : SAMPLING POINTS OF THE ACURATE DATA  7 

TABLE 2: VALUES OF THE HURST EXPONENT, H, SPECTRAL SLOPE, B, AND 
FRACTAL DIMENSION, D, FOR TIME SERIES  11 
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1. INTRODUCTION 

Atmospheric turbulence and diffusion differ from their 
wind-tunnel counterparts in significant ways, caused primarily 
by the strong stabilizing influence of the earth's rotation on the 
larger-scale eddy motions. In addition, theoretically idealized 
flows such as stationary, homogeneous turbulence, or unbounded 
shear flows, which can be simulated quite satisfactorily in a wind- 
tunnel, are found to occur in the atmosphere very infrequently, and 
then only over very small fractions of the total turbulent volume. 
Thus, turbulent flows that are well understood from a theoretical 
or an experimental point of view are of only limited applicability 
to atmospheric turbulence and diffusion problems. 

In very general terms, turbulent tropospheric motions appear to 
be of two kinds: large, quasi-horizontal, essentially two-dimen- 
sional, random eddy motions with length scales greater than several 
hundred kilometersj and smaller, three-dimensional random motions. 
The former cascade eddy enstrophy (mean-squared random vorticity) 
from the very large scale of eddy kinetic-energy generation (several 
thousand km) to scales of a few hundred km. The latter "dissipate" 
this random vorticity by rapidly attenuating, distorting, and con- 
centrating it and-cascading the eddy-kinetic energy to the very 
small (< 1 cm) scale of viscous dissipation. Natural or man-mad* 
clouds diffusing in this atmospheric field of random eddies in 
effect sample the turbulence structure through an ever-increasing 
volume of the atmosphere. At first, as the cloud spreads in the 
energy-cascade region, cloud growth by relative diffusion is rapid 
because the range of eddy sizes present always includes those that 
are just the size of the plume (Batchelor,1952). Later, the cloud 
expands into the  range of the enstrophy-cascading eddies. This range 
is characterized by rapid distortion, due to the large eddies, accom- 
panied by diffusion at a reduced rate; large clouds quickly develop 
very irregular outlines, as is  clear from the distorted shapes of 
the volcano plumes studied by Gifford (1989) and of the Chernobyl 
cloud (Smith, 1989). The usual cloud diffusion models, which have 
been developed in effect for the small-scale end of the energy- 
cascade range of eddies, do not describe the evolution of clouds 
spreading into the enstrophy-cascade region. 

NOAA scientists conducted a series of diffusion experiments of 
increasingly large scale to study this problem; the ACURATE, CAPTEX, 
and ANATEX projects. The ACURATE (for Atlantic Coast Unique Region- 
al Atmospheric Tracer Experiment) results include 19-month series 
of 12-hour averaged Kr^S concentrations measured at ground 
level at five observation points downwind of the Savannah River 
Plant at Aiken, SC. Observation sites ranged from Fayetteville, NC 
to Murray Hill, NJ, about 1100 km downwind. This report presents an 
analysis of these concentration time-series using a technique suggested 
by the recently-developed theory of random fractals, the so-called 
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"renormalized-range" statistic. 

2. THE NOAA/ACURATE DATA 

To clarify the complicated behaviour of the spreading of large 
clouds in the troposphere, as well as to support the diffusion mod- 
eling required by a host of important environmental problems of 
ever-increasing scale, it has become necessary to study tropospher- 
ic turbulence and diffusion to longer and longer distances from 
pollutant sources. This need was underscored by the recent air pol- 
lution disasters at Chernobyl and Bhopal. The NOAA experiments were 
designed primarily to produce diffusion-model validation data, and 
several comparisons have been published. But the data, especially 
the ACURATE results, are also a valuable archive of basic infor- 
mation on the detailed structure of atmospheric turbulence and 
diffusion (Heffter.et al.. 1984). 

In general, measuring diffusing clouds at large distances from 
a source requires somewhat heroic experimental arrangements, 
such as deploying hundreds of ground samplers or using several 
aircraft. Consequently the few completed experimental programs, 
summarized for instance by Gifford (1985), have produced very 
limited examples - partial measurements of only a few clouds 
for limited periods of time. In contrast the ACURATE program, 
using a Kr85 source-of-opportunity, measured downwind plume 
concentrations at five stations for over a year and a half. 
Moreover precise and detailed source-output data are available. 
Kr^S" ^s ^n many ways an ideal atmospheric tracer, being 
long-lived, gaseous, non-reactive, and measurable at very low 
concentrations. Even though the source strength varied consider- 
ably, the time series of measured, 12-hour averaged Kr^5 values 
must contain large amounts of information on plume structure, and 
consequently the structure of turbulence, particularly in the 
enstrophy-cascade region. 

The ACURATE data, as reported by Heffter, et al. (1984), 
consist of measurements of Kr^5 emitted from the Savannah River 
Plant (SRP), a production facility of the U. S. Department of 
Energy located some 35 km SE of Aiken, SC. Concentrations were 
averaged over 12-hour periods beginning at 0200Z and 1400Z, 
between March 1, 1982 and September 30, 1983 except at Murray Hill, 
where 24-hour averaged samples were taken and recorded as equal 12- 
hour values. The sampling points extended downwind from the 
source at the Savannah River Plant in an approximately north- 
easterly direction, at the distances and locations given in Table I 
Of the 5 times 1158 possible concentration samples, 3858 non-zero 
values were archived. All these plus the source strength data are 
tabulated in the report, which provides much additional background 
of the experiment. 
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TABLE I 

SAMPLING POINTS OF THE ACURATE DATA 

Length of record, 
Station (Abbrev.) Distance, km 12-hour periods 
Savannah River Plant (SRP) 0 1158 
Fayetteville, NC .   (FAY) 325 240 (18)* 
Tarboro, NC (TAR) 475 311 (555) 
Norfolk, VA (NOR) 635 512 (578) 
Salisbury, MD (SAL) 790 408 (685) 
Murray Hill, NJ (MUR) 1050 944 (22) 
*(Record number of first concentration in each series) 

The Kr85 data for the five ACURATE stations were prepared in 
the following way, to make them suitable for the proposed analysis. 
Leading and trailing zeros of each series were first removed. Then 
the data were inspected to identify periods containing at most a 
few single- or double-zero entries. Since KR^5 has a measurable 
background, zeros at the sampling points were used to indicate missing 
data. The longest period of record so defined for each station 
was chosen for analysis. For MUR this is nearly the entire period 
of record, a series of 944 12-hour averages. Other stations' records 
yielded various shorter periods, as indicated in Table I above. 
Numbers in parentheses in the Table indicate the record number of the 
first non-zero, 12-hour averaged concentration value that was used at 
each site. The single and double zeros in all these records were then 
filled in by linear interpolation between adjoining, non-zero values. 
Figs. 1-5 display the resulting time series of 12-hour averaged 
concentration values. In general the Kr$5 concentration values 
all follow a pattern of irregular variation around a value on the 
order of 18 or 19 picocuries/meter^ when the plume is not present, 
and increase sharply to peaks up to several times that when it is. 
The global background of KR^5 varies with latitude and loc- 
ation. Heffter, et al. (1984) assign the value 19 picocuries/ 
meter^ as the "background upper limit" of the ACURATE observa- 
tions. The presence of the plume generally results in elevated concen- 
tration values over at least three successive (12-hour) data 
periods, and so occasional interpolation over one or two missing 
data values seems to be acceptable. The 12-hour averaged source- 
strength data, Figure 6, have been plotted without alteration, 
since zeros of these data ordinarily indicate zero emissions. 

Figures 1 through 5 have some qualitative properties worth 
noticing. There is a discernible increase in the time between 
concentration peaks with increasing distance, which agrees very 
well with the intuitive idea that plume spreading and meandering 
are caused by the larger and larger eddies encountered downwind. 
The frequencies of concentration maxima, defined arbitrarily as 
values above 21 pc/m^, at each sampling location are 0.14, 
0.10, 0.06, 0.05 and 0.02 per day at FAY, TAR, SAL, NOR and MUR 
respectively, a roughly linear decrease with distance. The relation 
of these large-scale plume fluctuations to those measured at 
much smaller scales, in the 50-100 m range by Hanna and Insley 
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(1989) , up to a kilometer by Mylne (1990) , and from 10 to 70 km by 
Mueller and Reisinger (1986), is an interesting subject for future 
study. Small-scale concentration variability is present at all the 
stations and seems to decrease in amplitude slightly with distance. 
This variability is however much less than that of the short-term 
variation of the source strength, as can be seen in Figure 6. 

The ACURATE concentration data, because they are 12-hour 
averages, can be expected to yield structural information on 
atmospheric motions and diffusion at correspondingly large size 
scales. Concentration is a scalar property of the turbulence. The 
method of realizing this structural information depends on some 
recent developments in the theory of random fractals, cf. 
Mandelbrot (1982) , Feder(1988), Barnsley, et al. (1988) . in which 
it is shown that the fractal dimension of a passive scalar function 
of the turbulence such as these concentration measurements is direc- 
ly related to that of the turbulence itself. Consequently analyses of 
the concentration-time series provide equivalent measures of the 
turbulence structure; in the case of the ACURATE data this is esti- 
mated to correspond to eddy scales ranging upward from about 200 km, 
assuming a typical transport wind of about 18 km/hr. 

3. FRACTAL DIMENSION OF ATMOSPHERIC CLOUDS 

The observed shapes of energy spectra in the earth's tropo- 
sphere, especially the extensive GASP spectra (Nastrom and Gage, 
1986), strongly suggest a large-scale, enstrophy-cascade range and a 
smaller-scale, energy-cascade range of turbulent atmospheric winds 
extending in broad spectral regions above and below a fairly wide 
transition region at a scale of about 300-500 km. The largest 
atmospheric eddies, at scales just below the scale at which kinetic 
energy is generated in the atmosphere, are essentially two-dimen- 
sional in structure because of their great size, several thousand 
km. They are believed to create a flux of random vorticity, or 
eddy enstrophy, toward smaller scales of motion. Such motions have 
been called geostrophic turbulence (Charney, 1971). At scales of 
several-hundred kilometers, eddies begin to appear that are small 
enough to be affected by the essentially 3-dimensional process of 
vortex stretching and deformation by the strain-rate field of the 
larger eddies. This process increasingly concentrates and deforms 
the eddy-vortex structure and results in an energy cascade toward 
the minute, dissipation scale of eddy motions. Enstrophy and energy 
transfer in these two broad spectral regions can be described solely 
in terms of the "similarity" parameter appropriate to each range, 
the averaged eddy-enstrophy transfer and eddy-energy transfer rates 
(Gifford, 1988). The length scale separating these two cascade ranges 
corresponds closely to the time scale of the earth's rotation, the 
reciprocal of the Coriolis parameter, 1/f, which has been shown 
(Gifford, 1984) to equal the outer, or integral scale of atmo- 
spheric diffusion. 

This suggests that long series of concentration values measured 
at fixed points, such as the ACURATE data, which also depend on the 



structure and dynamics of turbulence in the cascade ranges, will 
reflect a self-similar (more precisely a self-affine) structure, as 
has been discussed by Barnsley, et al. (1988) and Feder (1988) . 
These concentration-time series record, in effect, a  one dimen- 
sional measure of the spatial structure of the evolving Kr^5 cloud. 
Because the measurement in time bears an unknown scale relationship 
to the corresponding spatial measurement, it is not strictly 
correct to speak of (spatial) self-similarity, and so the closely- 
related concept of self-affinity has been invoked (Mandelbrott   1982) 
For a concentration-time series to be self-affine, it must have the 
property that changes in concentration depend on time in such a way 
that in a statistical sense, for any two times t^ and t2, 

C(t2) - C(ti) cc (t2 - ti)H  , (1) 

The similarity constant H, the so-called Hurst exponent, is 
related to fractal dimension, D, by 

D = 2 - H  . (2) 

the idea of fractal dimension was introduced by Mandelbrot (1982) 
to account for the fact that natural shapes, including the outlines 
of clouds, the shapes of snowflakes and radar rain echos, and many 
other atmospheric phenomena, can not be measured by the Euclidean 
metric that applies to smooth, geometrical objects. The fractal 
dimension, which exceeds the Euclidean dimension (and is usually 
fractional), is in effect a measure of an object's irregularity, 
Lovejoy (1982) showed, by comparing the areas and perimeters of 
radar and satellite images of precipitation and cloud patterns, 
that the fractal dimension, D, of the perimeters of clouds and 
rainbands and, by inference, of the atmospheric turbulent eddies 
that drive those features, equals 1.35 over a broad range of eddy 
scales. Gifford (1989) showed that this result applies closely up to 
linear scales of about 300-400 km, or time scales a few times 
10^ seconds, but that at larger scales, in the enstrophy- 
cascade region, Lovejoy's data support D  =» 1.8, indicating turbu- 
lence of a markedly different type at these larger scales. Since 
these examples of fractals refer to cloud perimeters, whose 
Euclidean dimension is one, they lie between one and two. The cor- 
responding result for the areas of cloud cross-sections would be 
2.35 and 2.78; and for cloud volumes there will naturally be 
another unit increase to these dimensions. Ludwig (1989) has pro- 
vided an excellent review of the considerable and rapidly expanding 
literature on atmospheric fractals and their properties, and a 
general review of applications to geology and geophysics was given 
by Turcotte (1989) . 

Squaring equation (1) and averaging gives 

<6C2> a 6t2H   f (3) 

since H is defined to be a constant of this idealized process; 
6C is the concentration increment over the time lag, 6t=t2-t]_; 
and <...> indicates averaging over all possible values. Also from 
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Eq.Cl), the so-called "renormalized-range" statistic (Mandelbrot, 
1982) can be written as 

^max(T) - Cmin(T)]/cc(T) = R(T)/S(T) = brH (4) 

where R is the range, S (=ac) is the standard deviation of 
C during the time interval T=ti-tQ, and the interval r   is 
always measured from the initial value of the series.  Logarithmic 
plots of R/S vs, T, or of <6C2>l/2 Vs. 6t, should contain 
broad linear ranges if, in these ranges, atmospheric turbulent 
motions are self-similar. Atmospheric values of the similarity 
exponent H, and of the fractal dimension D of atmospheric 
turbulence, follow directly from these slopes, since in general 
D = E+l-H, where E is the Euclidean dimension of an object (Mandel- 
brot, 1982) . 

4. BROWNIAN MOTION IN ATMOSPHERIC DIFFUSION MODELING 

All atmospheric diffusion modeling makes use of the assump- 
tion of Brownian motion. This is done either directly, as in models 
of the Lagrangian particle motion (e.g. Hanna, 1979; Gifford, 1982), 
or indirectly, through the assumption of Gaussian turbulence 
statistics in plume models or by use of K-theory.  The turbulent 
motion v(t), and consequently the position of a pollutant particle, 
can be expressed as 

v(t+6t) =  v(t) + r(t) (5) 

(Hanna, 1979), where r(t) is a random velocity with Gaussian 
statistics; r(t) is the integral of a random acceleration, a(t), 
having Brownian motion, or "white noise" statistics, i.e. 

= \b r(t) =   a(x)dx    . (6) 

Integration of v(t) in turn gives the value of the displacement, 
y(t), of a particle from the axis of the mean wind,  since 
dy(t)/dt = v(t). Such a Gaussian random process has the well-known 
properties: 

and 

<y(t) - y(t0) > = 0 

oy = <(y(t) - y(t0))
2> at.    (7) 

Mandelbrot (1982) proposed the following generalization of 
the Brownian motion model; 

<[y(t) - y(t0)P > a t2H   f       (8) 
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where 0<H<1. From Eq. (7) , H is equal to 1/2 for ordinary Brownian mo- 
tion. In nature H does not usually equal 1/2; natural noise signals 
are ordinarily not white. By fitting various kinds of long, natural 
time-series (river discharges, tree-ring data, varves, etc.) to 
Eq.(4), it has been found (Feder, 1988) that often H « 0.7-0.8. 
The assumption that atmospheric turbulence is of the Brownian 
motion type, implying that H = 1/2, is known to result in fairly 
good estimates of atmospheric diffusion (e.g. Barr and Gifford, 
1987,' Gifford, 1985) , which is why it is a staple of atmospheric 
modeling. Yet systematic departures are known to occur and must be 
considered by modelers. Theoretical arguments (Mandelbrot, 1983; 
Hentschel and Procaccia, 1983) in terms of fractal geometry for 
the special case of fully-developed homogeneous turbulence, not 
often realized in the atmosphere, indicate that H is on the order 
of 1/3. 

Figure 7, from Barnsley et al. (1988) , illustrates fractional 
Brownian-motion (fBm) curves for a range of values of H. For 
H = 0.8, corresponding most closely to the river-discharge, varve, 
and tree-ring data, high-frequency spikes are small and the fBm 
curve is relatively smooth. For H = 1/2, the case of ordinary 
Brownian motion, all frequencies are equally represented. For 
H = 0.2, presumably closest to atmospheric turbulence, the fBm 
curve is decidedly rougher at all scales. Numerical algorithms 
for generating such fBm curves, developed at first for computer 
simulation of natural landscapes, can be found in Barnsley et al. 
(1988) and Feder (1988). Given suitable values of H, these algo- 
rithms can be introduced directly into Lagrangian diffusion 
models. There they will simply replace existing random-number 
generators such as the acceleration, a, in Eq. (6) to provide more 
realistic atmospheric turbulence simulation than the default 
assumption H = 1/2. 

The physical meaning of H is perhaps most easily conveyed 
by relating fBm to the more familiar power- or energy-spectrum 
representation. In a similarity region of the spectrum the energy- 
density has a power-law relationship to frequency, proportional to 
1/fß , where f is frequency and ß is a constant similarity ex- 
ponent . The fractal dimension of the energy spectrum in such a 
region can be shown (Mandelbrot, 1982) to be given by 

D=E+1-H=E + (3-3) /2 (9) 

where E is the spectrum's Euclidean dimension. For time 
spectra, E = 1 and D = 2-H. Since 0<H<1, the array of values shown 
in Table II can be developed. 
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TABLE II 

VALUES OF THE HURST EXPONENT, H, SPECTRAL SLOPE, B, AND FRACTAL 
DIMENSION, D, FOR TIME SERIES 

Power Law 
Parameter 

Extreme 
Value 

Kolmogoroff 
Turbulence 

Brownian 
Motion 

Extreme 
Value 

H 
B 
D 

1 
1 
2 

1/3 
5/3 
5/3 

1/2 
2 
3/2 

1 
3 
1 

H = 1/3 is the theoretical value for Kolmogoroff turbulence, I.e. 
locally-homogeneous flow with an inertial-range spectrum. H = 1/2 
corresponds, as pointed out above, to the spectrum of ordinary Brownian 
motion . 

The autocorrelation curve is also governed by H. For H = 1/2 
the fBm is uncorrelated; future values are completely independent 
of the past. For H>l/2 the fBm exhibits persistence. so that 
departures from the mean tend to be followed by even larger 
departures. In the limit of large time, the correlation remains 
positive. For H<l/2 the limiting value of the correlation is 
negative, indicating antipersistence: large departures tend 
to be followed by a return toward the central value. 

Until the development of fractal geometry there has been no 
quantitative, explicit way to take such differences in the shape of 
turbulence functions into account in models and indeed little by 
way of quantitative perception of their existence in atmospheric 
flows. By applying the theoretical results sketched briefly above 
to the ACURATE data, we can hope to find out how H and D behave 
at large scales in the troposphere, so that this information can be 
incorporated into atmospheric diffusion models. The following results 
indicate something of what can be accomplished using the fractal 
methodology. 

5. SPECTRA AND CORRELATIONS 

Figures 8 through 13 are power spectra of the ACURATE concen- 
tration and source-strength time series, made using the Cooley-Tukey 
FFT algorithm developed by Yamartino (1988). Means have been removed, 
and the spectral densities smoothed, using the standard procedures 
recommended in this reference. Spectra for stations NOR and SAL have 
been smoothed twice to make them a little more intelligible. The 
spectra have been plotted in logarithmic coordinates in the hope of 
finding linear, and therefore similarity regions at their high 
frequency ends, corresponding to the enstrophy-cascade region. 
Of the five spectra, only those for TAR and MUR show reasonably 
linear regimes at high frequencies, Figs. 8 and 9. The slopes in 
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each instance are very close to the value  3 = 3.0 in frequency 
ranges from about daily to once per 2.5 days. 

Autocorrelations of the same data are shown in Figure 14« Thf*. 
autocorrelation of the source emissions at SRP is included for 
comparison. The concentration correlations all have similar, 
exponential shapesj they each drop rapidly, although at substan- 
tially differing rates, and approach zero from very slightly 
negative values. The source autocorrelation also drops rapidly, as 
was to be expected from the appearance of Fig. 6, the emissions- 
time plot. Its behavior thereafter is however quite different 
from that of the concentration correlograms, giving some hope that 
the the latter have been formed primarily by atmospheric effects. 
The emissions data, Fig. 6, suggest that source emissions have a 
white-noise character but with substantial nonstationarity, no 
doubt associated with the evident long-term changes in emissions 
patterns. 

Rationalizing the shapes of these conventional descriptors of 
stochastic behavior is not the principal business of this study and 
will not be pursued further here, except to remark that the unsteadi- 
ness of the SRP sources is a problem, the more so the shorter the 
distance downwind. Meaningful interpretations in terms of spectra.! 
slope, or the scales of the correlograms, will obviously be very 
difficult to come by. At a guess, it might be useful to identify 
more nearly stationary sub-periods for spectral analysis, based on 
the emissions patterns of Fig. 6. Judging by the interesting numer- 
ical experiments by Fox (1989) _, who compared spectral and fractal- 
ly derived similarity exponents for computer-generated unstationary 
series, fractal methods may be less troubled by the problem of non- 
stationarity . 

6. RENORMALIZED RANGE (R/S) ANALYSIS 

The renormalized-range statistic R/S, defined by Eq« 4  above, 
is formed from a time series of observations of a quantity by 
determining a new series whose members, up to a given member of the 
original series, T, consist of the ratio of the range, R, i.e. the 
largest minus the smallest value, to the standard deviation, S, of 
the values of the series up to that same member. As a measure of 
dispersion, the range has chiefly been used in quality control appli- 
cations involving short data runs. Its applicability to the fractal 
analysis of geophysical time series was pointed out by Mandelbrot 
(1982) and is discussed in the references already given, especially 
Feder (1988) . 

Figures 15-20 are renormalized-range plots of the ACURATE data, 
including (Fig.20) the emissions data. The R/S values are plotted 
on the same, logarithmic coordinates in each case, to facilitate 
comparisons among the various sites. The actual concentration-time 
series used are those illustrated in Figs. 1-6, which were also 
the basis for the spectral and autocorrelation analyses of the 
preceding section. A solid line connects all data points, and 
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segments chosen for power-law least-squares analysis are indicated 
by a dashed line of best fit. These segments are further delineated 
by having a selection of data points (in most cases every tenth 
point) plotted. The slopes of the best-fit lines, i.e. the values 
of the Hurst exponent, H, in Eg. 4, are tabulated in each figure. 

The R/S curves for the ACURATE concentration data, Figs. 15-19, 
in spite of some irregularity in the sense of departures from strict 
power-law behavior, show a remarkably consistent pattern. Each is 
easily resolved by inspection into series of straight-line (i.e. 
power-law) segments connected by jumps, both upward and downward, 
to a new linear segment. The connecting segments last several 
days to a week or so and are irregular in shape, exhibiting no clear 
structural pattern. The linear segments, which indicate fractal 
(i.e. self-similar) behavior of the eddy motions at these scales, 
persist for periods that are usually on the order of several weeks 
but often last for months. The quality of the power-law curve fits in 
these linear segments is so high that it has not seemed worthwhile 
to bother calculating correlations, which obviously would equal 
unity to several significant figures. In a few instances 
the jump periods can be associated with aperiodic shifts in the 
emissions level (Fig. 6), but most jumps are related to the 
sudden onset of sharp concentration maxima, the spikes of Figs. 
1-5. Considering the form of the R/S statistic, it is easy to 
understand how a concentration peak, caused by a swinging of the 
main Kr^S plume over a recording station, results in a sharp rise 
in R/S by increasing R more than S. Some of the downward jumps, 
which tend to be less abrupt and are often irregular, seem to be 
driven by the non-stationarity of the source term. Others could be the 
result of concentration spikes too small to increase the range but 
Targe enough to increase the standard deviation. The behavior of 
the source-strength R/S curve, Fig. 20, differs qualitatively from 
these concentration R/S patterns as indeed does the source-strength 
spectrum, Fig. 13, from the concentration spectra of Figs. 8-12. 

Such comparisons of segments of R/S curves to equivalent parts 
of the original time series are possible because the R/S statistic 
preserves real-time relationships. This means that every point along 
the T-axis of an R/S graph corresponds to the same point of its 
original time axis. This property contrasts R/S sharply with the 
power-spectrum statistic, and makes it possible to associate 
particular features of R/S curves with specific values or ranges of 
the original time-series. As a result it can be seen that power- 
law, i.e. self-similar, behavior is characteristic of the concen- 
tration-time plots, and consequently of the eddy-structure at these 
large scales, most of the time. This interesting property can not 
be inferred from the energy spectra or autocorrelations. 

The slopes of the linear segments in Figs. 15-19 show a weak 
tendency to increase slightly with the time interval, T, from 
H-values near 0.35 for R/S values calculated for intervals extend- 
ing to two or three weeks to values near 0.45 or more for intervals 
extending to several months. The smaller values, by the reasoning 
outlined above, characterize atmospheric eddy motions at  scales 
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corresponding to the enstrophy-cascade range. The larger values of 
H are associated with the largest scales of motions that influenced 
the Kr85 concentration data. Values of H = 0.3 to 0.4 corre- 
spond to fractal dimensions D of 1.6 to 1.7, in agreement with 
various other estimates, for instance Gifford (1989). One should, 
of course, interpret these results with caution. Fractal index 
values estimated from limited series of such highly variable data are 
not likely to be valid to much more than a single decimal place 
(cf. Mandelbrot, 1982), which means that the uncertainty of the H- 
values may be about +/- 0.1. Additionally, the ACURATE data are 12- 
hour averages, and neither sampling nor averaging properties of frac- 
tal statistics have been studied to any extent. Also it is desirable, 
according for instance to Feder (1988), to base estimates of R/S on 
much larger series of observations. The calculated R/S values are, 
moreover, limited by the fact that the interval T has been measured, 
in each instance, from the first value of the concentration-time 
series only, in order to preserve the time relationship pointed out 
above. Particularly for smaller values of T, other non-overlapping 
data periods could have been used and, in the interests of statisti- 
cal reliability, this should be a future task. But even the limited 
evidence described here seems adequate to suggest the need to 
constrain stochastic elements of large-scale atmospheric diffusion 
models to agree with an H-value of 0.3 or 0.4 in the enstrophy- 
cascade range, rather than to depend solely on the default value of 
H = 1/2, for ordinary Brownian motion, that current diffusion- 
modeling practice in effect assumes. 

7. R/S ANALYSES OF SOME SMALL-SCALE, HIGH FREQUENCY DIFFUSION DATA 

There have, as far as the writer knows, been no previous 
studies of atmospheric tracer concentration data by the renormal- 
ized-range method, and so the somewhat complex shapes of the ACURATE- 
data R/S curves raise some interesting but difficult questions. 
Will similar patterns of power-law R/S behaviour interspersed with 
more-or-less rapid jumps in R/S level be found in the analysis of 
short-range, high-frequency concentration measurements? What H- and 
D-values will characterize time series of such data? Is the jump pattern 
peculiar to plume concentrations from isolated sources, or does it 
also occur for distributed sources of atmospheric emissions, such as 
area sources or line sources? Such questions underscore the desir- 
ability of applying the R/S analysis to a wide range of atmospheric 
turbulence and diffusion data. But to help put the present results 
into some kind of perspective, two further turbulence-data time 
series of atmospheric measurements have been analyzed. 

Figure 21 is a time series of concentration measurements made 
under mid-day, convective conditions over desert terrain, 175 m 
downwind from a continuous point source near the ground. The 
concentrations were measured as part of a series of low-level 
SFg tracer tests at Hanford, WA, using a continuous, very fast- 
response monitor. The resulting R/S values are shown in Figure 22, 
together with some typical, linear-segment slope values. We see that 
power-law, similarity behavior occurs; that it is interrupted by 
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jumps, as was true for the ACURATE data; and that, so far as can be 
concluded from a single run, H equals about 0.3 to 0.35 in this range 
of small-scale turbulent motions. 

Figure 23 is a two-minute series of water-vapor flux values, 
measured by a very rapid response technique over an irrigated 
agricultural (cotton) field during early-morning conditions of 
developing convective instability. Corresponding R/S values, shown 
in Figure 24, after an initial few seconds of erratic behavior rise 
smoothly and linearly. In the range from 10 to about 120 seconds 
H is very close to 0.4, with no jumps during that period of measure- 
ment. Since the data are an example of area-source diffusion, the 
lack of jumps such as were found in the R/S analysis of the ACURATE 
data can be taken as at least a provisional indication that the 
jumps that are found in the ACURATE R/S-curves, and in Fig.22 ^bove, 
may be a feature of point-source diffusion. Further such R/S analyses 
of both point- and area-source diffusion should be made to explore 
this issue. 

8. SUMMARY AND CONCLUSIONS 

Nineteen-month series of 12-hour averaged Kr^5 air concen- 
tration values, the NOAA/ACURATE data (Figs. 1-5), measured at 
five stations up to 1050 km downwind from the source at Savannah 
River, near Aiken SC (Fig. 6), have been analyzed by a method of 
fractal geometry, the renormalized-range statistic, R/S (Eq. 4). 
The resulting R/S-plots (Figs. 15-19) indicate that atmospheric 
diffusion at scales greater than several hundred km, in the 
enstrophy-transfer range of the troposphere's energy spectrum, is 
driven by large-scale, horizontal, self-similar eddies whose 
characteristic fractional Brownian motion exponent (Eq. 8) is in 
the range H - 0.3-0.4. This corresponds to a fractal dimension in 
the range D = 1.6-1.7 for one-dimensional measures of the flow 
such as these concentration-time series. This is a useful result 
for large-scale atmospheric diffusion modeling, which currently 
assumes that ordinary Brownian motion (i. e. H = 1/2) applies. Such 
Brownian motion is purely uncorrelated whereas actual atmospheric 
flows at these large scales exhibit antipersistence, i. e. a small 
negative correlation at large lagtimes, according to these results. 
The similarity exponent H seems to increase slightly with time 
scale, to values of 0.40-0.45 at the time periods in excess of a 
week or two, corresponding to the synoptic scales of eddy kinetic- 
energy generation. 

The properties of atmospheric turbulent diffusion at scales be- 
tween 100-200 km and 1000-2000 km have not been much studied. This 
range tends to fall into a gap between the statistical theories 
of planetary boundary layer turbulence and diffusion studies and 
the numerical-analytical solutions of large-scale modeling. PBL- 
scale diffusion models are pushed to, and in most cases probably 
beyond, the reasonable limits of their necessary assumptions at 
distances more than 20 or 30 km. And even the most venturesome 
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among synoptic-scale modelers perceive a fairly large-scale lower 
limit to their predictions of atmospheric motions, of perhaps 
500 km at an optimistic estimate, because of inability of these 
models to resolve turbulence at smaller scales, But practical 
operational and regulatory problems are no respecters of such 
limitations and require diffusion estimates when and as needed, 
What is needed is a method for supplying the correct kind and 
degree of randomness to the diffusion models, according to the 
fractional Brownian motion properties of the atmosphere, at scales 
ranging upwards from a few tens of kilometers. This can be done hy 
using fBm algorithms with appropriate H-values to simulate 
atmospheric turbulence statistics, Many more determinations of 
atmospheric values of H and D at various scales clearly need to be 
made. It is hoped that the above results can help both to 
characterize turbulent atmospheric motions at the troublesome 
intermediate scales in a way that can be put directly to work in 
diffusion models, and to encourage use of a potentially fruitful 
technique for analyzing atmospheric diffusion data of many 
kinds at all scales, 
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